The International Symposium on Optical Science and Technology

Noise performance comparison of ICCD with CCD and EMCCD cameras

Paul Hoess, David Dussault

Stanford Computer Optics / Paul Hoess KG, Munich, GERMANY

Topics

Introduction - 3 LLL sensing concepts

- CCD
- ICCD
- EMCCD

Noise sources

- Shot noise
- Dark current noise
- Readout noise

Signal-to-noise ratio

- Single frame operation
- Long integration time versus frame adding

Discussion of the simulation results

Conclusions

CCD (Charge-Coupled Device)

- CCD = array of photodiodes (light-sensitive pixels).
- **Generation** (high Q.E. η , 1e⁻ per photon) and **storage** of electrons when exposed to light.
- Read-out of the charge by changing the electrical bias of an adjacent pixel.
- Charge to voltage conversion, digitization to numerical value by external circuitry.

ICCD (Intensified CCD)

- Photocathode: Generation (low Q.E. η, 1e⁻ per hv) of photoelectrons.
- Microchannel plate (MCP): multiplication (G_{MCP}) of electrons.
- Phosphor screen: conversion (G_{screen}) of electrons back into highly increased ($x10^4$ - 10^6) number of photons.
- High numerical aperture lens-coupling for superior distortion free image quality.
- CCD: conversion of the very high number of photons to charge, readout and digitization.

EMCCD (Electron Multiplying CCD)

- Generation and storage of electrons (high Q.E. η , 1e⁻ per photon), equivalent to CCD.
- Amplification by impact ionization in the gain register.
- Charge to voltage conversion, digitization equivalent to CCD.

Noise sources [1]

All signals and noises are calculated in equivalent number of electrons at system output.

Shot noise N_{shot} [e⁻/pixel]

$$N_{shot} = G \times F \times \sqrt{\eta \phi_p \tau}$$

G: multiplication gain

F: noise factor of gain

η: quantum efficiency

 ϕ_p : mean incident photon flux per pixel

τ: integration time [s]

Noise sources [2]

Dark current and its noise N_{dc} [e⁻/pixel]

$$N_{dc} = \left[2.55 \cdot 10^{15} N_{dc0} \tau \cdot d_{pix}^{2} T^{\frac{3}{2}} e^{\left(\frac{-E_g}{2kT}\right)} \right]^{\frac{1}{2}}$$

N_{dc0}: dark current at room temperature [nA/cm²]

d_{pix}: pixel size [cm]

T: operating temperature [K]

E_a: bandgap energy in eV

k: Boltzmann's constant

 $(8.62 \cdot 10^{-5} \text{eV/K})$

Noise sources [3]

- Read-out noise N_r:
 - generated through charge transfers across the CCD. readout amplifier reset, "any other" electronic noises
 - Strongly pixel clock (frame rate) and slightly temperature dependent.
 - independent of integration time.
 - for EMCCDs:

$$N_r = \left[N_{r0}^2 + (G \times N_{ct})^2 \right]^{1/2}$$

where N_{ct} is the charge transfer noise that is multiplied in the gain register and N_{r0} is all other non-multiplied readout noises.

Noise sources

Total noise N_{tot}:

$$N_{tot} = (N_{shot}^2 + N_{dc}^2 + N_r^2)^{1/2}$$

05.08.2004

Signal-to-noise ratio [1]

Single frame operation

$$SNR_{unit} = \frac{G\eta\phi_{p}\tau}{(N_{shot}^{2} + N_{dc}^{2} + N_{r}^{2})^{1/2}}$$

- Shot-noise-limited operation if N_r and N_{dc} << N_{shot}:
 - high Φ_p ,
 - high G,
 - or N_r and N_{dc} extremely small.

Signal-to-noise ratio [2]

Long time integration (traditional approach):

$$SNR_{long} = \frac{n_l G \eta \phi_p \tau}{\left[n_l (N_{shot}^2 + N_{dc}^2) + N_r^2\right]^{1/2}} = \sqrt{n_l} \frac{G \eta \phi_p \tau}{\left[N_{shot}^2 + N_{dc}^2 + \left(N_r^2 / n_l\right)\right]^{1/2}}$$

where n_i is the factor by which the integration time τ is increased.

Parameters of the simulation

CCD:

- η=50%, front-illuminated
- G=F=1
- $N_r = 25e^{-}$ (5MHz) or $5e^{-}$ (1MHz)

ICCD:

- η=50%
- F=1.6
- G=500
- $N_r = 25e^{-1}$

EMCCD:

- η =50% (FI) or 90% (BI)
- F=1.4
- G=500
- $N_{r0}=25e^{-1}$
- N_{ct}=2.2e⁻ (31kHz) or 5.4e⁻ (1MHz)

τ=20 ms

N_{dc0}=0.1 or 3nA/cm² @ 300K

hort frame mode

Simulation of extended integration time

low to very low Φ_{n} , low camera noise

CCD:

Better SNR with long frame.

EMCCD:

- Clear influence of cooling in low light conditions,
- frame adding not as effective as for ICCD.

ICCD:

- Same results with frame adding or long frame,
- cooling not required.

Parameters:

- τ=20ms
- $N_{dc0}=0.1nA/cm^2$
- $N_{ct} = 2.2e^{-}$

Mean incident photon flux (photons/second/pixel)

Simulation of single short frame mode

high to medium Φ_{p} , high camera noise, realistic operating conditions

CCD:

 Negligible temperature influence at 5MHz readout rate.

EMCCD:

- Still a decrease of the SNR in LLL,
- Slightly superior to CCD at room temperature,
- SNR improvement for lower temperatures,
- BI: high QE, slight temperature dependence, readout dominated.

ICCD:

 Still in shot-noise-limited operation, unchanged.

Parameters:

- τ=20ms
- $N_{dc0}=3nA/cm^2$
- N_{ct}=5.4e⁻

Simulation of extended integration time

low to very low Φ_{n} , high camera noise, realistic operating conditions

CCD:

- Long frame better than frame adding,
- Frame adding: significant sensitivity increase without additional hardware.

ICCD:

 No influence of noises, better than EMCCD over a wide range.

EMCCD:

 Better than ICCD only at extremely low light levels (int. time ≥ 1min.)

Parameters:

- τ=20ms
- $N_{dc0}=3nA/cm^2$
- $N_{ct} = 5.4e^{-}$

Mean incident photon flux (photons/second/pixel)

Conclusions

- Best SNR provided by CCD at high light levels, operating range extended to low light levels through slow scan and cooling.
- Need for strong cooling of EMCCD sensors to eliminate dark current.
- Need for very low frame rates operation for EMCCDs in order to minimize charge transfer noise.
- No cooling, no slow scan required for the CCD sensor of an ICCD system.